Подсказки для поиска

Внимательный

Внимающий

Спасибо за внимание

Принимая во внимание

Обратите внимание

Новый подход поможет людям более успешно общаться с большими языковыми моделями

Большие языковые модели — подобные тем, что используются в чат-ботах ChatGPT и других — могут писать рассказы, создавать контент-планы для соцсетей и даже шаблоны юридических документов. И все это — по запросу пользователя на обычном (естественном) языке.

Но с операциями, требующими вычислений, модели справляются куда хуже. Почему? Дело в том, что языковая модель обучена на текстовых данных, которые для нее — просто данные. Буквы соединяются в слова и предложения, потому что модель оценивает вероятность такого сочетания. Но она не оценивает достоверность и точность указанных сведений.

Возьмем, например, вопрос Какие президенты США, избранные после 1950 года, родились в среду?. Языковая модель, которая полагается на вероятность (что в изученных ею текстах где-то уже есть нужное сочетание), скорее всего, ошибется. Получить ответ можно с помощью других программ.

Исследователи из Массачусетского технологического института (MIT) предложили подход, который помогает языковым моделям преодолеть это ограничение. Этот подход, названный встроенными программами на естественном языке (Natural Language Embedded Programs, NLEPs), позволяет отправить модели инструкцию (промпт) на естественном языке, чтобы та создала и запустила программу на языке Python, а затем представила результат на естественном языке.

Опыты группы разработчиков из MIT показал, что NLEP позволяет большим языковым моделям достигать бо́льшей точности при решении широкого спектра задач, связанных с логическими операциями. При этом созданные ими промпты универсальны, их можно использовать повторно для других аналогичных задач.

Комментарий Бориса Орехова, кандидата филологических наук, руководителя образовательной программы «Цифровые методы в гуманитарных науках» НИУ ВШЭ:
«Путь, которым идут разработчики, преследует сразу две цели. С одной стороны, таким образом инженеры пытаются победить широко известную проблему больших нейросетей — „галлюцинации“, то есть неверные ответы, которые исходят из явно некорректных представлений о предмете. Разработчики остроумно пытаются сменить основной узел выполнения задачи: им становится не предсказатель наиболее вероятного порядка слов в тексте, а компьютерная программа с четким алгоритмом.

С другой стороны, здесь есть стремление повысить понятность (интерпретируемость) для человека того способа, которым решается задача. В принципе, в нейросетях нет ничего загадочного, мы понимаем, как они устроены и как работают, но так как при решении каждый раз задействуются миллиарды нейронов, не всегда можно проследить, что и как сработало в каждом конкретном случае. И это вызывает у исследователей дискомфорт и непонимание, что именно стоит улучшать в будущем.

Способы победить „галлюцинации“ (например, путем интеграции с базами знаний) в последнее время множатся. Мы ожидаем, что скоро найдется наиболее эффективный, и нейросети больше не будут выдавать смешные абсурдные ответы. Способы сделать решения, которые принимают нейросети, более прозрачными, тоже стали появляться сравнительно давно (Explainable AI). Здесь они объединились».

Портал «Грамота.ру»

Еще на эту тему

Как отличить текст, написанный нейросетью? Ряд критериев предложен на «Хабре»

ИИ не способен к оригинальному мышлению и творческому осмыслению информации

Приличное поведение больших языковых моделей может быть обманчивым

Попытки перевоспитать «спящих агентов» только ухудшают ситуацию

Чат-боты GPT и другие: что думают лингвисты о больших языковых моделях

Впереди демократизация порождения текстов и большие риски злоупотреблений

все публикации


Коллекция «ПостНауки»: сколько в мире языков и какие самые сложные

Мнение лингвистов о языковом разнообразии, двух типах исследователей и пользе мертвых языков


Слово года по версии Грамоты. Как мы его выбираем?

От составления длинного списка до экспертного голосования


Как вы пользуетесь Грамотой? Пять рассказов от первого лица

Порталу исполняется 24 года! Отмечаем день рождения вместе с вами


Лингвист Олег Беляев об истории осетинского языка и его особенностях

«Один раз выучил окончание и везде его ставишь — это называется агглютинация»


Тест: в каком предложении нет ни одной ошибки?

Вам предстоит критически оценить сорок предложений из художественной литературы и найти десять безупречных


Категория рода в русской грамматике в сравнении с другими языками

«Лосось», «лебедь», «дитя», «невежда» и другие языковые сущности сложной судьбы


Пол Грэм: «Мир, разделенный на пишущих и не пишущих, опаснее, чем кажется»

Программист и предприниматель Пол Грэм описал будущее, в котором ИИ пишет тексты за человека


Слова-путешественники: каким образом русские слова оказались вдали от России

И насколько эти заимствования были изначально русскими? Разбирается лингвист Мария Елифёрова


Метапредметный подход в обучении русскому языку: один за всех, все за одного

Без знания лексики и умения извлекать смысл из текста страдают математика и другие школьные предметы


Словарный запас: как его оценить и на что он влияет

Хорошая новость состоит в том, что взрослые продолжают его расширять до 55 лет и даже дольше


Елена Березович: «Диалектологам становится все труднее работать»

Профессор Уральского университета обобщила результаты анкетирования коллег 


Учитель Сергей Волков: «А давайте сказку про репку перескажем гекзаметром!»

Как учить детей русскому языку в эпоху торжества технологий и сглаживания иерархии культур



О чем мы можем узнать из средневековых рукописных текстов

Интервью с медиевистом Олегом Воскобойниковым на канале «Основа»


Как лучше описывать разговорную лексику в словарях

Лингвисты обсуждают проблемы лексикографического представления диалектизмов, регионализмов, феминитивов и «жестовых» слов


Как лингвистическая экспертиза может повысить качество учебников

Главные критерии — понятность, интересность и тематический баланс


Общение в интернете происходит на особом устно-письменном языке

Его отличия от разговорного языка и от обычного письменного анализируются в статье Натальи Клушиной


Что такое старомосковское произношение

Говор стал престижным в тот момент, когда начал устаревать



1/6
Большой универсальный словарь русского языка (2 тома)
1 — 4 классы
Морковкин В.В., Богачева Г.Ф., Луцкая Н.М.
4.3
Подробнее об издании
От 2320 ₽
Купить на маркетплейсах:
Назовите ваше слово года!
Какие новые слова в 2024 году прочно вошли в вашу речь? На какие вы обратили внимание, какие стали чаще слышать вокруг? Участвуйте в выборе «Слова года» по версии Грамоты.
Отправить
Спасибо!
Мы получили ваш ответ и обязательно учтем его при составлении списка слов-кандидатов
Читать Грамоту дальше
Новые публикации Грамоты в вашей почте
Неверный формат email
Подписаться
Спасибо,
подписка оформлена.
Будем держать вас в курсе!