Подсказки для поиска

Нейросеть выучилась понимать язык без использования текстовых данных

Большие языковые модели — нейросети, способные порождать тексты на естественном языке, — обычно обучаются на текстах. Ключевое отличие обучения таких программ от обучения людей заключается в том, что люди овладевают языком, не прибегая к использованию таких колоссальных объемов однородных данных. При этом программы еще и допускают нелепые (с нашей точки зрения) ошибки.

Один из альтернативных подходов — позволить машинам учиться так, как учатся дети. А именно используя разные типы данных, между которыми изначально есть очевидные связи (например, видеоряд и звуковая дорожка, которая относится к нему). В голове у детей естественным образом формируются связи, причем у слова возникает целый спектр ассоциаций.

По этому пути пошли исследователи из Массачусетского технологического института, Оксфордского университета и компаний Google и Microsoft. Они разработали модель, получившую название DenseAV. Ее обучили «понимать» на основании аудиоинформации, о чем идет речь, и искать соответствующие видеофрагменты — и наоборот, при просмотре беззвучного видео находить возможные звуковые соответствия.

При чем же тут язык? Например, когда мы слышим фразу Испеките торт при температуре 180 градусов, мы, скорее всего, видим на экране торт и духовку. Чтобы добиться успеха в этой игре на поиск соответствий между аудио и видео среди миллионов фрагментов, модель должна сформировать единое понятие, которое связывает спектр визуальных образов и спектр звуков.

Перед тестированием DenseAV обучили с использованием двух миллионов видеороликов с YouTube, а также других видео. Причем данные не были предварительно размечены — модель сама «догадывалась», как связать видео и звук в единый сюжет. Модель также не была предварительно обучена на каких-либо текстовых данных; она сама выделяла слова из массива аудиоданных.

Авторы работы могли наблюдать, какие детали видеоряда модель выделяет в ответ на предъявленные ей звуки. Например, при слове собака она выделяла изображения собак и связывала их с произносимым словом. Интересно, что модель «опознавала» собаку и в звуках собачьего лая, показывая, что ей под силу создавать ассоциации на основе признаков, которые отсылают к понятию.

По словам ведущего автора работы Марка Хэмилтона, на проведение опыта его команду вдохновил фильм «Марш пингвинов». В одной из сцен пингвин идет по льду и падает, после чего издает короткий прерывистый крик. «Почти очевидно, что этот крик означает слово из четырех букв на английском», — иронизирует Хэмилтон. Шутки шутками, однако подобные опыты могут открыть дорогу и к пониманию разных способов общения между животными.

Портал «Грамота.ру»

Еще на эту тему

Искусственный интеллект помог создать фонетический «алфавит» кашалотов

Исследователи вычислили базовые звуки, из которых киты составляют большой репертуар фраз

Искусственный интеллект научился частично понимать птичий язык

Исследователи смогут объяснить фермерам, как улучшить условия выращивания домашних кур

Нейросеть научилась распознавать задуманные слова по активности мозга

Это может помочь пациентам с речевыми расстройствами

все публикации

Одушевленное и неодушевленное в языке: как в этом разобраться

Почему мы встречаем важного клиента, но на компьютер устанавливаем клиент

Изоляты — языки без «родственников»

Как получилось, что им не нашлось места ни в одной языковой семье?

Берестяные грамоты находят даже в вечной мерзлоте

Алексей Гиппиус рассказал об итогах раскопок 2025 года

Лингвист Наталья Брагина о вежливости и конфликтной коммуникации в XXI веке

В выпуске программы «Говорим по-русски!» рассказали о том, как интонация и частицы могут сделать вежливое высказывание грубым

Местный для местных: секретный падеж русского языка

Почему мы говорим «о шкафе», но храним вещи «в шкафу»?

Еще раз про любовь

Лингвист Ирина Левонтина изучает оттенки современного языка для отношений

От торговцев до сидельцев: история тайного языка коробейников

Кем были офени, зачем они меняли слова и как стали «отцами» воровского арго

Бог: как правильно писать и произносить

Для орфографии имеет значение, о каком божестве мы говорим

Ирина Фуфаева об истории феминитивов и о том, чем они бывают полезны

Негативное восприятие специальных наименований для женских профессий связано с языком бюрократии

Почему нельзя сказать «напишомое»?

Самые неожиданные вопросы справочной службе

Авторский стиль и манера общения: что показывает анализ сгенерированных текстов

Вышел четвертый номер журнала «Коммуникативные исследования» за 2025 год

Уважение, эмпатия и компетентность — три кита цифрового этикета 

Ольга Лукинова рассказала об этичном общении в интернете

Путешествие за языком: что такое полевая лингвистика

Лингвист Сергей Татевосов объясняет, почему малые языки интересуют науку не меньше, чем большие и известные

О чем говорят популярные слова 2025 года

Усталость от ИИ, абсурд и сложные эмоции

Разговор с ИИ-сторонним: что такое промпт как часть коммуникации

Валерий Шульгинов решил разобраться в лингвистической природе диалога с нейросетью

Как дети учатся говорить

Освоение языка на уровне родного происходит до 6–7 лет

Что такое геймерский жаргон и как он вышел за пределы игрового мира

«Заспавнил мобов» и «затащил катку» в переводе на русский литературный

1/6
Большой универсальный словарь русского языка (2 тома)
1 — 4 классы
Морковкин В.В., Богачева Г.Ф., Луцкая Н.М.
4.3
Подробнее об издании
Купить на маркетплейсах:
Назовите ваше слово года!
Какие новые слова в 2025 году прочно вошли в вашу речь? На какие вы обратили внимание, какие стали чаще слышать вокруг? Участвуйте в выборе «Слова года» по версии Грамоты.
Отправить
Спасибо!
Мы получили ваш ответ и обязательно учтем его при составлении списка слов-кандидатов
Читать Грамоту дальше
Новые публикации Грамоты в вашей почте
Неверный формат email
Подписаться
Спасибо,
подписка оформлена.
Будем держать вас в курсе!