Подсказки для поиска

Чем сгенерированные тексты отличаются от написанных человеком

Всё чаще можно слышать, что большие языковые модели вроде ChatGPT «пишут как люди». На первый взгляд их способность имитировать нашу речь действительно потрясает. Но более пристальный научный анализ все же выявляет различия.

Научная группа из Университета Карнеги — Меллона (США) проверила с помощью методов корпусного анализа, насколько созданные человеком тексты отличаются от текстов в тех же жанрах и стилях, но созданных языковыми моделями (LLM).

Исследователи сформировали датасет из текстов, написанных людьми. Были отобраны тексты в разных жанрах — от записей разговорной речи (например, подкастов) до новостных заметок, статей в журналах и научных работ. 

На основе отрывков из этих текстов (объемом по 500 слов каждый) шесть языковых моделей — GPT-4o, GPT-4o Mini, Meta Llama 3 8B, 70B, 8B Instruct и 70B Instruct — сгенерировали похожие образцы. Для каждого текста, написанного человеком, авторы получили по шесть образцов от LLM.

Для дальнейшего анализа были сформированы два корпуса текстов: параллельный корпус, состоящий из созданных людьми и сгенерированных моделями в ходе первого этапа эксперимента текстов, и большой корпус текстов на английском языке, включающий около миллиарда слов в  различных жанрах. Второй — большой — был нужен, чтобы оценить, насколько результаты анализа, полученные на небольшой выборке текстов, согласуются с данными большого корпуса.

Затем тексты оценили с помощью методики американского лингвиста Дугласа Бибера по 66 критериям, среди которых лексическая сложность, средняя длина слова, использование номинализаций (существительных, образованных от прилагательных или глаголов, таких как проживание или надежность), пассивного залога, хеджей (языковых единиц, которые делают высказывание более расплывчатым, — нечто вроде, по всей видимости), клаузальной координации (соединение двух или более самостоятельных предложений в одно с помощью сочинительных союзов) и т. д.

Опираясь на эти характеристики, исследователи поставили компьютерному алгоритму-классификатору задачу распределить тексты по двум группам:  человеческие и машинно-сгенерированные. Только 4,2% текстов, созданных LLM, были ложно классифицированы как написанные человеком, и только 9,8% человеческих текстов были ложно классифицированы как написанные LLM.

LLM значительно чаще людей использовали причастные конструкции, придаточные предложения с that (это, этот) в качестве подлежащего, отглагольные существительные и другие конструкции, характерные для информационно плотного стиля письма.

При этом сами модели отличались друг от друга, имели свой узнаваемый (по крайней мере для стастических инструментов) «почерк». Так, Llama 3 почему-то питала особенную «любовь» к таким не самым частотным словам, как camaraderie (товарищество) и palpable (осязаемый). В целом словоупотребление моделей часто указывало на предпочтение «грандиозных, хотя и пустых» обобщающих фраз, говорится в работе.

Таким образом, хотя отличить сгенерированные тексты на глаз становится все труднее, строгий статистический анализ пока хорошо справляется с  этим. И есть даже предположения, почему тексты моделей выглядят именно так. Различия в стиле обусловлены не только выбором текстов для обучения, но и настройкой моделей с помощью инструкций в ходе обучения, считают авторы.

Было показано, что комплексная методика корпусного анализа текстов хорошо справляется с выявлением машинно-сгенерированных текстов. А это значит, ее потенциально можно использовать при проверке письменных работ или научных статей.

Портал «Грамота.ру»

Еще на эту тему

Языковые модели оказались хорошими помощниками в написании рассказов — но не для всех

В способности к творчеству моделям пока далеко до человека

Как отличить текст, написанный нейросетью? Ряд критериев предложен на «Хабре»

ИИ не способен к оригинальному мышлению и творческому осмыслению информации

Исследование: внутренний язык больших языковых моделей ближе всего к английскому

«Английский уклон» может проявляться при порождении текстов на других языках

все публикации

Слово как оружие: фэнтези о тайной библиотеке и волшебной печатной машинке

В издательстве «МИФ» вышел перевод книги Карстена Хенна «Золотая печатная машинка»

Проявленность: следующий шаг после «быть собой»

В языке поп-психологии у осознанности появилась пара

«Академос» — орфографический ресурс, а не словарь новых слов

Сотрудники Института русского языка имени В. В. Виноградова рассказали о задачах онлайн-ресурса

Сигма: независимый одиночка

Как песня в исполнении двух юных девушек прославила новый тип мужчины

Лингвист Игорь Мельчук вспоминает о жизни и науке середины XX века

Ведущие подкаста «Глагольная группа» анонсировали серию разговоров со знаменитым ученым

Слоп: низкокачественный ИИ-контент

Когда нейросети засоряют интернет-пространство бессмысленными «помоями»

Федор Успенский: «Меня раздражает, когда привычные вещи, на которых я вырос, начинают меняться»

Как меняется русский язык? Лингвисты по просьбе Грамоты рассказывают о главных трендах

Ред-флаг: предупреждение об опасности

Тревожные звоночки еще можно игнорировать, а от красных флагов лучше сразу бежать

Пупупу: новое междометие

Реакция на негатив, задумчивость и принятие неизбежного

Промпт: запрос к языковой модели

С новыми технологиями в нашем активном лексиконе появляются и новые слова

Топонимические легенды предлагают яркие истории вместо этимологии

Откуда куропатки на гербе Курска и кто стрелял из лука в Великих Луках?

Подсветить: смысловое выделение

Модный глагол позволяет расставлять нужные акценты и влиять на восприятие информации

Лимб: зависнуть в неопределенности

Слово с богословскими корнями стало обозначать подвешенное состояние

Русские отчества: как вас по батюшке?

Исторически Иванов и Иванович — одно и то же

Выгорание: остался только пепел

Как редкое слово с техническим смыслом стало популярным обозначением последствий стресса

Галина Кустова: «Есть участки, где грамматика развивается быстро и даже стремительно!»

Как меняется русский язык? Лингвисты по просьбе Грамоты рассказывают о главных трендах

Имба: крутизна, которой нет равных

Как жалоба на дисбаланс превратилась в похвалу

Зумер: непонятная молодежь

Слово, которое полюбили социологи, маркетологи и рекрутеры

Брейнрот: контент, разлагающий мозг

Может ли потребление некачественного контента приводить к снижению когнитивных способностей?

Между 6 и 7: какую функцию выполняет числовой сленг

Социолингвист Валерий Шульгинов показывает на примерах, что мы можем сказать с помощью чисел

1/6
Большой универсальный словарь русского языка (2 тома)
1 — 4 классы
Морковкин В.В., Богачева Г.Ф., Луцкая Н.М.
4.3
Подробнее об издании
Купить на маркетплейсах:
Назовите ваше слово года!
Какие новые слова в 2025 году прочно вошли в вашу речь? На какие вы обратили внимание, какие стали чаще слышать вокруг? Участвуйте в выборе «Слова года» по версии Грамоты.
Отправить
Спасибо!
Мы получили ваш ответ и обязательно учтем его при составлении списка слов-кандидатов
Читать Грамоту дальше
Новые публикации Грамоты в вашей почте
Неверный формат email
Подписаться
Спасибо,
подписка оформлена.
Будем держать вас в курсе!