Подсказки для поиска

Внимательный

Внимающий

Спасибо за внимание

Принимая во внимание

Обратите внимание

Маргиналы цифрового мира: можно ли улучшить распознавание редких языков

Современные инструменты распознавания языков, такие как LangID (Language Identification) компании Google, используются для автоматического перевода, общения с пользователем на его языке, классификации и фильтрации данных. Однако со многими редкими языками они работать не умеют. Например, тексты на навахо — наиболее распространенном из языков коренных американцев — система распознает неправильно, как тексты на исландском, лингала, волоф и других языках.

Этот пример отражает более широкую проблему: языковые технологии сосредоточены преимущественно на популярных языках с широким присутствием в Интернете и игнорируют языки с небольшим числом носителей и дефицитом оцифрованных текстов. Такой перекос мешает сохранению и возрождению исчезающих языков.

Ранее в моделях вроде LangID преобладал универсальный подход для всех языков; в результате технологические компании создавали централизованные системы, в которых не учитывались языки, не имеющие коммерческого потенциала. Для навахо и других языков коренных американцев существовал серьезный дефицит цифровых ресурсов и корпусов текстов, необходимых для обучения нейросетевых моделей.

Это создавало замкнутый круг: нет данных — нет моделей — нет возможности создавать инструменты — нет мотивации создавать больше цифрового контента.

Исследователи из Дартмутского колледжа (США) разработали метод решения этой проблемы, используя алгоритм-классификатор Random Forest (‘случайный лес’). Он позволяет получать адекватные результаты на небольших объемах данных. Модель Random Forest относительно проста и устойчива к эффекту переобучения (при котором модель хорошо обрабатывает примеры из обучающей выборки, но относительно плохо работает на примерах, не участвовавших в обучении) благодаря агрегированию результатов множества деревьев решений.

Исследователи собрали два набора данных. Основной набор включал навахо и еще 20 языков, которые LangID ошибочно определял при анализе текстов на навахо. Дополнительный набор содержал тексты на родственных языках атабаскской семьи: западный апаче, мескалеро-апаче, хикарилья-апаче и липан-апаче.

Модель достигла впечатляющих результатов: общая точность 97–100% при распознавании навахо. Кроме того, она сумела увидеть родство атабаскских языков и собрать их в одну группу.

Авторы подчеркивают, что для решения задач идентификации языков не всегда нужны сверхсложные масштабные модели; такие задачи могут быть решены даже при ограниченных ресурсах. Вместо того чтобы ждать, когда крупные компании включат малые языки в свои модели, местные сообщества и исследователи могут создавать инструменты для конкретных языков, применяя относительно простые модели машинного обучения.

Портал «Грамота.ру»

Еще на эту тему

В России создали систему распознавания речи для диалекта карельского языка

В перспективе технология может помочь автоматизировать лингвистические исследования культур коренных народов РФ

Сотни представителей народов Севера и Дальнего Востока привлекут к исследованию их языков

Такое исследование входит в программу экспедиций «Чистая Арктика — Восток-77» и «Россия 360»

Для языков народов России создадут онлайн-переводчик

Устранять цифровое неравенство языков будет рабочая группа, созданная ФАДН

все публикации

Какие фамилии в русском языке не склоняются?

На склонение фамилии влияет не только пол ее носителя

Почему так трудно выбрать номинацию для людей с инвалидностью?

Ни прямота, ни политкорректность сами по себе не решают проблемы

ИИ отбирает у человека языковое пространство?

О некоторых публикациях журнала «Русская речь» за 2025 год

Знакомый почерк: что мы теряем вместе с ручным письмом?

Могут пострадать память, когнитивные способности и эмоциональная связь с прошлым

Экономика языка, или Как одни слова обесценивают другие

Лингвист Валерий Шульгинов объясняет, почему крольчонок стал кроликом и что случилось со словом nice

Как устроено ударение в разных языках

Оно может быть силовым, музыкальным или даже вовсе отсутствовать

«Нелицеприятная оценка»: странные формы и употребления на пути из ошибок в норму

Лингвист Ирина Фуфаева с интересом наблюдает за говорящими, уверенными в своей непогрешимости

Заец, Журавель и Казаченок: как склонять такие фамилии

Можно обратиться к словарю фамилий или прислушаться к мнению носителя

Светлана Гурьянова: «Главное — не запутаться в том, какое правило нужно применить!»

Подробный разговор о сложных заданиях на ЕГЭ, материалах для подготовки и настрое перед экзаменом

Денис Фонвизин: живая речь в комедиях и системность в словаре

Рассказываем о ключевых исторических фигурах, повлиявших на развитие русского языка

Что такое темематический язык и почему он так называется

На портале «Элементы» появились три новые лингвистические задачи

Склонение грузинских фамилий в русском языке

От Берии до Данелии и от Коставы до Окуджавы

Неологизмы бросают вызов лексикографам. Как на него ответит Лексикон Грамоты?

Чтобы ответить на запрос пользователей, выбираем слова-кандидаты, анализируем употребления, описываем значения

Мелетий Смотрицкий: архитектор славянской грамматики

Рассказываем о ключевых исторических фигурах, повлиявших на развитие русского языка

1/6
Большой универсальный словарь русского языка (2 тома)
1 — 4 классы
Морковкин В.В., Богачева Г.Ф., Луцкая Н.М.
4.3
Подробнее об издании
От 2320 ₽
Купить на маркетплейсах:
Назовите ваше слово года!
Какие новые слова в 2024 году прочно вошли в вашу речь? На какие вы обратили внимание, какие стали чаще слышать вокруг? Участвуйте в выборе «Слова года» по версии Грамоты.
Отправить
Спасибо!
Мы получили ваш ответ и обязательно учтем его при составлении списка слов-кандидатов
Читать Грамоту дальше
Новые публикации Грамоты в вашей почте
Неверный формат email
Подписаться
Спасибо,
подписка оформлена.
Будем держать вас в курсе!