Подсказки для поиска

Внимательный

Внимающий

Спасибо за внимание

Принимая во внимание

Обратите внимание

Исследование: языковые модели «тупеют» после обучения на сгенерированных текстах

В 2023 году специалисты в области нейросетевых вычислений Илья и Захар Шумайловы описали явление, которое они назвали «коллапс модели». Под коллапсом модели авторы понимают процесс «вырождения», затрагивающий несколько поколений генеративных моделей, в ходе которого сгенерированные данные снова и снова загрязняют ту выборку, на котором обучается следующее поколение моделей. В недавней статье, опубликованной в журнале Nature, они продемонстрировали, как это происходит.

Вначале они обучили большую языковую модель (LLM) на статьях из Википедии, а затем попросили модель сгенерировать тексты в стиле этих статей. Далее они включили эти сгенерированные тексты в выборку для следующего сеанса обучения модели. Этот круг они повторили несколько раз. С каждым разом модель делала свою работу все хуже и хуже.

Девятая версия модели, когда ее попросили написать статью об английских колокольнях, внезапно ушла в рассуждения о зайцах с черными, белыми, красными, синими и желтыми хвостами.

По словам Захара Шумайлова, он и его коллеги ожидали ухудшения результатов, но были удивлены тем, насколько быстро все «пошло не туда». Причина такой деградации в том, что модель выбирает из обучающей массы данных наиболее частотные слова и их сочетания. А слова, реже встречавшиеся в исходных данных, с большой долей вероятностью будут «отсеяны» моделью. Постепенно данные становятся все более однородными, а тексты превращаются в бессмыслицу. И это касается не только текстов, но и любых данных — картинок, графиков и др.

Можно было бы, конечно, не использовать сгенерированные (синтетические) данные. Но проблема в том, что уже сейчас данных для обучения моделей не хватает. Особенно в тех областях, где их и так немного (скажем, редкие языки). Кроме того, уже через несколько лет, по прогнозам, бо́льшая часть контента в интернете будет представлять собой сгенерированные данные, а не тексты и изображения, созданные человеком. 

Сейчас исследователи думают над тем, как предотвратить коллапс моделей. Например, при обучении модели на смеси настоящих и сгенерированных данных в пропорции 1:9 коллапс модели наступал медленнее. Хотя глобально этот подход, может, и не решит проблему, но позволит избежать массового «отупения» цифровых помощников.

Портал «Грамота.ру»

Еще на эту тему

Новую технологию распознавания сгенерированных текстов разрабатывают в НИУ ВШЭ

Результаты проекта «Поймай бота» будут доступны пользователям в 2025 году

Языковые модели оказались хорошими помощниками в написании рассказов — но не для всех

В способности к творчеству моделям пока далеко до человека

Обучение и самообучение: как синтетические данные влияют на работу больших языковых моделей

Михаил Копотев о роли сгенерированных нейросетью текстов в развитии моделей и в жизни людей

все публикации

Заец, Журавель и Казаченок: как склонять такие фамилии

Можно обратиться к словарю фамилий или прислушаться к мнению носителя

Светлана Гурьянова: «Главное — не запутаться в том, какое правило нужно применить!»

Подробный разговор о сложных заданиях на ЕГЭ, материалах для подготовки и настрое перед экзаменом

Денис Фонвизин: живая речь в комедиях и системность в словаре

Рассказываем о ключевых исторических фигурах, повлиявших на развитие русского языка

Что такое темематический язык и почему он так называется

На портале «Элементы» появились три новые лингвистические задачи

Склонение грузинских фамилий в русском языке

От Берии до Данелии и от Коставы до Окуджавы

Неологизмы бросают вызов лексикографам. Как на него ответит Лексикон Грамоты?

Чтобы ответить на запрос пользователей, выбираем слова-кандидаты, анализируем употребления, описываем значения

Мелетий Смотрицкий: архитектор славянской грамматики

Рассказываем о ключевых исторических фигурах, повлиявших на развитие русского языка

Мелет или мелит? Не трожь или не трогай? Изучаем глаголы со сложным характером

Ошибки нередко проливают свет на глубинные свойства языковой системы

Язык в большом городе: три способа адаптации к обстоятельствам

Лингвист Валерий Шульгинов — о родственных связях, чечиках и политкорректности

Как подготовиться к Тотальному диктанту за 10 дней

Вспомнить всё и получить хорошую оценку (хотя это не главное)

Тест на внимательность: найдите предложение без ошибок

Сможете ли вы работать корректором в издательстве художественной литературы?

1/6
Большой универсальный словарь русского языка (2 тома)
1 — 4 классы
Морковкин В.В., Богачева Г.Ф., Луцкая Н.М.
4.3
Подробнее об издании
От 2320 ₽
Купить на маркетплейсах:
Назовите ваше слово года!
Какие новые слова в 2024 году прочно вошли в вашу речь? На какие вы обратили внимание, какие стали чаще слышать вокруг? Участвуйте в выборе «Слова года» по версии Грамоты.
Отправить
Спасибо!
Мы получили ваш ответ и обязательно учтем его при составлении списка слов-кандидатов
Читать Грамоту дальше
Новые публикации Грамоты в вашей почте
Неверный формат email
Подписаться
Спасибо,
подписка оформлена.
Будем держать вас в курсе!