Подсказки для поиска

Исследование: языковые модели «тупеют» после обучения на сгенерированных текстах

В 2023 году специалисты в области нейросетевых вычислений Илья и Захар Шумайловы описали явление, которое они назвали «коллапс модели». Под коллапсом модели авторы понимают процесс «вырождения», затрагивающий несколько поколений генеративных моделей, в ходе которого сгенерированные данные снова и снова загрязняют ту выборку, на котором обучается следующее поколение моделей. В недавней статье, опубликованной в журнале Nature, они продемонстрировали, как это происходит.

Вначале они обучили большую языковую модель (LLM) на статьях из Википедии, а затем попросили модель сгенерировать тексты в стиле этих статей. Далее они включили эти сгенерированные тексты в выборку для следующего сеанса обучения модели. Этот круг они повторили несколько раз. С каждым разом модель делала свою работу все хуже и хуже.

Девятая версия модели, когда ее попросили написать статью об английских колокольнях, внезапно ушла в рассуждения о зайцах с черными, белыми, красными, синими и желтыми хвостами.

По словам Захара Шумайлова, он и его коллеги ожидали ухудшения результатов, но были удивлены тем, насколько быстро все «пошло не туда». Причина такой деградации в том, что модель выбирает из обучающей массы данных наиболее частотные слова и их сочетания. А слова, реже встречавшиеся в исходных данных, с большой долей вероятностью будут «отсеяны» моделью. Постепенно данные становятся все более однородными, а тексты превращаются в бессмыслицу. И это касается не только текстов, но и любых данных — картинок, графиков и др.

Можно было бы, конечно, не использовать сгенерированные (синтетические) данные. Но проблема в том, что уже сейчас данных для обучения моделей не хватает. Особенно в тех областях, где их и так немного (скажем, редкие языки). Кроме того, уже через несколько лет, по прогнозам, бо́льшая часть контента в интернете будет представлять собой сгенерированные данные, а не тексты и изображения, созданные человеком. 

Сейчас исследователи думают над тем, как предотвратить коллапс моделей. Например, при обучении модели на смеси настоящих и сгенерированных данных в пропорции 1:9 коллапс модели наступал медленнее. Хотя глобально этот подход, может, и не решит проблему, но позволит избежать массового «отупения» цифровых помощников.

Портал «Грамота.ру»

Еще на эту тему

Новую технологию распознавания сгенерированных текстов разрабатывают в НИУ ВШЭ

Результаты проекта «Поймай бота» будут доступны пользователям в 2025 году

Языковые модели оказались хорошими помощниками в написании рассказов — но не для всех

В способности к творчеству моделям пока далеко до человека

Обучение и самообучение: как синтетические данные влияют на работу больших языковых моделей

Михаил Копотев о роли сгенерированных нейросетью текстов в развитии моделей и в жизни людей

все публикации

Михаил Штудинер не спешит изгонять из языка то, что в нем еще живо

Автор «Словаря трудностей русского языка» — об объективном характере нормы и ее субъективной фиксации

Как менялись библиотеки?

История книжных коллекций от собраний табличек до храмов литературы в новой книге МИФа

Новое образование для «нового человека»: как учили грамоте в советской школе сто лет назад

31 августа исполняется сто лет декрету о всеобщем начальном обучении в РСФСР

Язык и пространство: что находится в центре мира?

Реки, горы и стороны света могут быть встроены в языковую систему координат, объясняет Валерий Шульгинов

Курсы лекций Ирины Кобозевой и Андрея Кибрика доступны на платформе Teach-in

Не нужно быть студентом, чтобы погрузиться в лексическую семантику и ареальную лингвистику

Как философы пытались создать идеальные языки

Продуманные, точные — но абсолютно непригодные для общения

Чем речовка лучше речевки? Три переменчивых неологизма XX века 

Раньше слова «речовка», «плащовка» и «мелочовка» писались по-другому

От пашни до веб-сайта: что верстает верстальщик?

В истории названия распространенной современной профессии разбиралась лингвист Ирина Фуфаева

В издательстве «МИФ» вышла книга о книгах

Как создавали, распространяли и запрещали книги

Андрей Кибрик о русскоязычных жителях Аляски и особенностях их диалекта

Сохранить аляскинский русский невозможно, но необходимо его документировать

Чем нас привлекает общение с языковыми моделями

Чат-бот может быть удобным собеседником, но для некоторых людей это удобство чревато проблемами

В научном сообществе исследование обсценных слов находится под запретом

Так считают авторы заметок о русском мате Анатолий Баранов и Дмитрий Добровольский

Лучшие программы-корректоры на основе ИИ

Роботы уже могут исправить большинство ошибок, но сами добавляют новые

Горячая десятка заимствований: что тут сложного?

Пользователи Грамоты часто ищут информацию об этих заимствованиях, которые еще не освоились в русском языке

Язык тела: как жесты помогают нам общаться

Они дополняют, уточняют и даже заменяют слова

Елочки или лапки? Как правильно использовать кавычки

Они нужны для оформления прямой речи, цитат, названий, а также слов, использованных иронически

Мария Каленчук: «Да, мы ориентируемся на живую речь!»

В издательстве «Грамота» вышел Большой словарь ударений

1/6
Большой универсальный словарь русского языка (2 тома)
1 — 4 классы
Морковкин В.В., Богачева Г.Ф., Луцкая Н.М.
4.3
Подробнее об издании
От 2320 ₽
Купить на маркетплейсах:
Назовите ваше слово года!
Какие новые слова в 2024 году прочно вошли в вашу речь? На какие вы обратили внимание, какие стали чаще слышать вокруг? Участвуйте в выборе «Слова года» по версии Грамоты.
Отправить
Спасибо!
Мы получили ваш ответ и обязательно учтем его при составлении списка слов-кандидатов
Читать Грамоту дальше
Новые публикации Грамоты в вашей почте
Неверный формат email
Подписаться
Спасибо,
подписка оформлена.
Будем держать вас в курсе!